
EECS 440 System Design of a Search Engine
Winter 2021

Lecture 17: Shingles

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

1

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda

1. Course details.
2. Shingles.

2

Agenda

1. Course details.
2. Shingles.

3

details
1. HashBlob. All but two teams finished with 180/180. I was

surprised that most teams placed an unnecessary dummy
SerialTruple sentinel at the end of every chain.

2. LinuxTinyServer assignment posted. Expression parser is optional.

3. Allowed features pleadings are a little tedious. I really can’t stop
you from doing whatever you want but I’m hoping you’ll write as
much as possible yourself as part of the learning experience and
because it’s a somewhat competitive assignment and these are
the “Pinewood Derby”rules.

4. Group presentations Apr 19 & 21.

4

Agenda

1. Course details.
2. Shingles.

5

Basic problem

The web is full of duplicate content.

What you don’t want in a search engine is for the top 10 results
to all be the same page.

Very easy to identify exact duplicates by comparing checksums,
e.g., CRCs, of the files.

But most of the duplicates are only near duplicates, e.g., a last
modified date.

6

Straightforward algorithm

Hash of a document
Hash("It grows in dry places...") = 8d2f908...

When crawling a new document
Compute hash
Look up in hash table

If present, it's a duplicate
If not, put in the hash table

How many comparisons for N web pages?
O(N) = O(N) lookups at O(1) per lookup

7

Why not compare entire
document?

Documents can be similar but not exactly the same

8

Stripping “chrome”

One strategy is to try to strip out “chrome”, e.g., HTML tags,
headers, footers and sidebars.
But still a question of how to quantify similarity.

9

10Source: http://infolab.stanford.edu/~ullman/mmds/ch3.pdf

http://infolab.stanford.edu/%7Eullman/mmds/ch3.pdf

k-Shingles

Consider a document as a string of characters or words.

Define a k-shingle as any substring of length k found in the
document.
Suppose our document D is the string abcdabd, and we pick k =
2. Then the set of 2-shingles for D is {ab, bc, cd, da, bd}.

11

Picking shingle size

k can be any constant you like.
If it’s too small, then most sequences will appear in most
documents, creating false positives.
k should be large enough that the probability of any given
shingle appearing in any given document is low.
k often chosen between 5 and 9 words or perhaps 25 to 50
characters.

12

Shingles are hashed

Shingles are then hashed.
Bits are transposed randomly in the same way for all hashes.
Smallest result is saved in a hash table.
To look for a duplicate, look for a match in the hash table.

13

Document 1

264

264

264

264

Start with 64-bit f(shingles)

Permute on the number line

with πi

Pick the min value

Sec. 19.6

Test if Doc1.Sketch[i] = Doc2.Sketch[i]

Document 1 Document 2

264

264

264

264

264

264

264

264

Are these equal?

Test for 200 random permutations: π1, π2,… π200

A B

Sec. 19.6

However…

Document 1 Document 2

264

264

264

264

264

264

264

264

A = B iff the shingle with the MIN value in the union of Doc1 and
Doc2 is common to both (i.e., lies in the intersection)

Claim: This happens with probability
Size_of_intersection / Size_of_union

BA

Sec. 19.6

Observations

Transforms the problem from comparing various sizes of text to
comparing 64-bit integers.
But it’s still largely heuristic because you still have to decide how
big the shingles should be, whether to keep duplicates and how
many shingles to keep for each document.
Unclear why there’s an advantage to doing “200 random
permutations” (out of 64! = 1.27e+089 possible) of what are
already basically random numbers representing the hashes of all
the shingles.

17

To investigate

I’ve written and uploaded two C++ programs that can memory
map a file and calculate a sorted list shingles for comparison.

LinuxShingle.cpp
WindowsShingle.cpp

18

19

10 C% WindowsShingle.exe
Usage: Shingle [-d] <shingleSize> <stepSize> <N> <filename>
-d Report duplicates. By default, only unique shingles arereported
shingleSize = number of characters in a shingle
shingleStep = how many characters to step from one shingle to next
N = number of shingles to report. If N = -1, all shingles reported
11 C%

20

11 C% wc -l LinuxGet{Url,Ssl}.cpp
188 LinuxGetUrl.cpp
225 LinuxGetSsl.cpp
413 total

12 C% diff !$ | head
diff LinuxGet{Url,Ssl}.cpp | head
1c1,3
< // Linux get URL utility that copies the HTTP page to stdout.

> // Linux SSL get SSL utility that copies the HTTPS page to stdout
> // using OpenSSL
>
3a6,17
> // Required for build under Cygwin:
> // openssl
> // libssl-devel
13 C% diff LinuxGet{Url,Ssl}.cpp | grep '^^[><]' | wc -l

55
14 C% @ union = 413
15 C% @ difference = 55
16 C% calc percentOverlap = (union - difference)/union
0.866828
18 C%

21

101 C% WindowsShingle.exe 25 5 10 linuxGetUrl.cpp
118989564705677488
118993962752190332
130609402609293028
130703960609319174
168981396494694060
177539890157274494
184314166939961877
186826603892655687
195933926610954092
220539590904835157
102 C%

22

103 C% WindowsShingle.exe 25 5 10 linuxGetSsl.cpp
40923561173765480
60529522094422068
118989564705677488
118993962752190332
130609402609293028
168981396494694060
177539890157274494
184314166939961877
220539590904835157
236557822413782588
104 C%

23

104 C% set a = LinuxGetUrl.cpp
105 C% set b = LinuxGetSsl.cpp
106 C% WindowsShingle.exe 25 5 10 $a > $a.shingle
107 C% WindowsShingle.exe 25 5 10 $b > $b.shingle
108 C% di {$a,$b}.shingle
40923561173765480
60529522094422068
118989564705677488
118993962752190332
130609402609293028
130703960609319174
168981396494694060
177539890157274494
184314166939961877
186826603892655687
195933926610954092
220539590904835157
236557822413782588
109 C%

7 out of 10 shingles are shared.

24

Use a script to compare diffs and shingles.

110 C% similarity.csh 25 5 10 LinuxGet{Url,Ssl}.cpp
a = LinuxGetSsl.cpp
b = LinuxGetUrl.cpp
25 5 10
diffunion = 413
diffintersection = 358
diffsimilarity = 86.682809
shingleunion = 20
shingleintersection = 14
shinglesimilarity = 70
111 C%

25

Too small a number of shingles can generate a false
match.
123 C% similarity.csh 25 1 1 LinuxGetUrl.cpp LinuxTinyServer.cpp
a = LinuxTinyServer.cpp
b = LinuxGetUrl.cpp
25 1 1
diffunion = 475
diffintersection = 96
diffsimilarity = 20.210526
shingleunion = 2
shingleintersection = 2
shinglesimilarity = 100
124 C%

26

Tune the heuristics.

124 C% similarity.csh 25 5 50 LinuxGetUrl.cpp LinuxTinyServer.cpp
a = LinuxTinyServer.cpp
b = LinuxGetUrl.cpp
25 5 50
diffunion = 475
diffintersection = 96
diffsimilarity = 20.210526
shingleunion = 100
shingleintersection = 22
shinglesimilarity = 22
125 C%

27

Tune the heuristics.

125 C% similarity.csh 25 5 50 LinuxGetUrl.cpp LinuxWcMap.cpp
a = LinuxWcMap.cpp
b = LinuxGetUrl.cpp
25 5 50
diffunion = 260
diffintersection = 33
diffsimilarity = 12.692308
shingleunion = 100
shingleintersection = 8
shinglesimilarity = 8
126 C%

	EECS 440 System Design of a Search Engine�Winter 2021�Lecture 17: Shingles
	Agenda
	Agenda
	details
	Agenda
	Basic problem
	Straightforward algorithm
	Why not compare entire document?
	Stripping “chrome”
	Slide Number 10
	k-Shingles
	Picking shingle size
	Shingles are hashed
	Slide Number 14
	Test if Doc1.Sketch[i] = Doc2.Sketch[i]
	However…
	Observations
	To investigate
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

